Investigation on Mechanical and Electrical Properties of Cu-Ti Nanocomposite Produced by Mechanical Alloying
نویسندگان
چکیده مقاله:
In this paper, Cu-Ti nanocomposite synthesized via ball milling of copper-titanium powders in 1, 3, and 6 of weight percentage compounds. The vial speed was 350 rpm and ball to powder weight ratio kept at 15:1 under Argon atmosphere, and the time of milling was 90 h. Obtained powders were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), and dynamic light scattering (DLS). Crystallite size, lattice strain, and lattice constant were calculated by Rietveld refinement with Maud software. The results show a decrease in the crystallite size, and an increase in the internal strain and lattice parameter. Furthermore, the lattice parameter grew by increasing the percentage of titanium. Then, the powders compressed by the cold press and annealed at 650˚C, and finally, their micro-hardness and electrical resistance were measured. These analyses show that via increasing the proportion of titanium, Cu-6wt%Ti with 312 Vickers had the highest micro-hardness; due to the increasing the work hardening. Moreover, the results of the electrical resistance illustrate through increasing the amount of alloying material, the electrical resistance grew which the highest electrical conductivity was Cu-1wt%Ti with 0.36 Ω.
منابع مشابه
Effect of Ni on Amorphization of Ti-Cu-Ni Ternary alloys Prepared by Mechanical alloying
Amorphous alloys has been taken into consideration because of their unique properties and are nominated as the future engineering materials. In this research, the effect of Ni and milling time on amorphization process and thermal stability of Ti50Cu50-xNix(x=10, 15, 25 at%) alloy system were investigated. The evolution of amorphization during milling, thermal stability and subsequent heat treat...
متن کاملdetermination of some physical and mechanical properties red bean
چکیده: در این تحقیق، برخی خواص فیزیکی و مکانیکی لوبیا قرمز به-صورت تابعی از محتوی رطوبت بررسی شد. نتایج نشان داد که رطوبت بر خواص فیزیکی لوبیا قرمز شامل طول، عرض، ضخامت، قطر متوسط هندسی، قطر متوسط حسابی، سطح تصویر شده، حجم، چگالی توده، تخلخل، وزن هزار دانه و زاویه ی استقرار استاتیکی در سطح احتمال 1 درصد اثر معنی داری دارد. به طوری که با افزایش رطوبت از 54/7 به 12 درصد بر پایه خشک طول، عرض، ضخام...
15 صفحه اولRaney-nickel Catalysts Produced by Mechanical Alloying
Raney catalysts were prepared by a combination of mechanical alloying and leaching as an alternative in the synthesis of Raney-Nickel catalysts. Binary Al-Ni and ternary Al-Ni-Fe alloys with nominal compositions Al65Ni35, Al75Ni25, Al65Ni30Fe5, Al75Ni20Fe5 (in atomic percent), were processed from pure elemental powders; they consisted mainly of the intermetallic B2 AlNi phase. Aluminum was sele...
متن کاملSimultaneous Enhancement of Electrical Conductivities and Mechanical Properties in Cu-Ti Alloy by Hydrogenation Process
Effects of hydrogenation process of the microstructure, electrical conductivity and mechanical properties for the Cu-(1~3) mass%Ti alloys were investigated. During hydrogenation process at 350°C, 7.5 MPa for 48 h, the disproportionation reaction occurred with forming of Ti hydrides in the alloy. It is found that remarkable simultaneous improvements of mechanical strength of 1094 MPa and electri...
متن کاملMechanical and Hydration Properties of Nafion /Ceramic Nanocomposite Membranes Produced by Mechanical Attrition
A solid state method of NafionV/ceramic nanocomposite membrane preparation is described. A nanocomposite powder from Nafion pellets and a zirconium phosphate ceramic is formed by mechanical milling. The nanoparticles are then consolidated into membrane form by mechanical pressing. Cross-sectional analysis by scanning electron microscopy indicates that the ceramic particles exist in agglomerates...
متن کاملAZ31/HA-Zeolite Nano Crystalline Biocomposite Fabricated by Mechanical Alloying and Powder Metallurgy: Mechanical Properties
Magnesium and its alloys are light, biodegradable, biocompatible metals that have promising applications as biomaterials. Magnesium is potentially useful for orthopedic and cardiovascular applications. However, the corrosion rate of this metal is so high that its degradation occurs before the end of the healing process. One of the ways to improve the corrosion rate is to compose it’s with cer...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 33 شماره 9
صفحات 1759- 1765
تاریخ انتشار 2020-09-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023